edexcel 쁯

Mark Scheme (Results)
Summer 2013

International GCSE
Physics (4PHO) Paper 1PR
Science Double Award (4SC0) Paper 1PR

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013

Publications Code UG036657
All the material in this publication is copyright © Pearson Education Ltd

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
1 (a) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
total internal reflection \\
prism drawn in correct orientation (by eye) \\
correct reflection of rays (by eye):
\end{tabular} \& \begin{tabular}{l}
Accept TIR \\
Accept a freehand sketch of the triangular prism \\
Size of prism unimportant, e.g. can fill the entire square, but horizontal and vertical edges must be drawn \\
Accept freehand sketch \\
Accept correct external reflection \\
e.g. reflection as shown below gets 1 mark for 1 (b)(ii) despite the error in the 1 (b)(i) response
\end{tabular} \& 1
1

1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
$2 \text { (a) (i) }$ (ii)	$\begin{aligned} & \text { B- } 2 \mathrm{~cm} \\ & \text { C- } 8 \mathrm{~cm} \end{aligned}$		1 1
(b)	Idea that in a transverse wave the direction of vibration is perpendicular to the direction of the wave; (May be shown with labels on the diagram) Idea that longitudinal wave the direction of vibration is parallel to the direction of the wave; (May be shown with labels on the diagram) A named freehand sketch of either wave indicating the two directions; e.g. transverse Longitudinal	Allow (for vibration) oscillation / displacement / disturbance (for direction of wave) direction of travel / energy / transfer (for perpendicular) at right angles, is \perp to (for parallel) the same as, // the minimum labeliing is to name of the type of wave they have drawn. Allow sine waves with appropriate arrows Allow diagrams indicating compression and rarefaction e.g. in a spring Allow for 1 mark (but only if other mark is scored) a comparison of the directions of vibration of both waves without relating them to the direction of the wave e.g. transverse vibrates up and down but longitudinal vibrates back and forward	3
(c)	any two of		2

Question number		Answer	Notes	Marks
4 (a)		any three of MP1 idea that there is current (in the wire/coil); MP2 idea that (the coil has) a magnetic field; MP3 idea that coil's magnetic field interacts with field of permanent magnet; MP4 idea that there is a force on the coil/wire; MP5 Idea that current or force reverses every half turn;	Allow ideas of electromagnetic field, electromagnet Allow - 'magnetic fields touch / overlap' Ignore - 'cutting of magnetic fields' Allow ideas of LHM rule, Fleming's LHR, catapult field, attraction, repulsion Allow action of a commutator described	3

(b) (i) (ii)	any two of MP1 increase magnetic field(e.g. stronger magnets or magnets closer or magnets curved round coil); MP2 increase current OR voltage Or more cells; MP3 increase number of turns (on coil); MP4 a sensible alternative suggestion e.g. use two or more sets of coils at angles, lubricate axle; Suggestion that clearly results in reversal of the current OR the cell connections OR the magnet's field;	Allow "use thicker wire" Ignore "stronger battery" Allow idea of 3 phase supply, iron stator	2
(c)	any two of MP1 Idea that force is increased (by stronger field); MP2 Idea of radial magnetic field (rather than a uniform one); MP3 Coil remains in the field for a longer time;	Allow idea that iron is magnetised Allow idea that magnetic field acts "all the way around" Allow idea that force acts over a larger part of a cycle	2

Question number	Answer	Notes	Marks
6 (a) (i) (ii)	any three of Idea of collisions / impact (with walls); Continuous bombardment; force produced; Pressure = force \div area; Idea that the student is right $O R$ the pressure decreases; AND any two of The number(or mass) of molecules stays the same; The gas volume increases; Pressure is inversely proportional to volume; Particles collide with the wall less frequently;	Ignore collisions between particles Allow idea of momentum changing Both marks depend on previous correct response (e.g. pressure decreases) Allow idea that area of can in contact with gas increases OR gas particles have more space Allow mention of $p_{1} V_{1}=p_{2} V_{2}$ in this context Allow "longer time between collisions"	3
(b)	(Average speed) increases;		1

Question number	Answer	Notes	Marks
7 (a) (i) (ii) (iii)	pressure difference $=$ height (or depth) \times density $\times g$; substitution into correct equation; evaluation; $\begin{aligned} & \text { e.g. } 1028 \times 10 \times 700 \\ & 7196000(\mathrm{~Pa}) \end{aligned}$ (total pressure $=$) $72 \times 10^{5}+1 \times 10^{5}(\mathrm{~Pa})$;	Allow $\mathrm{h} \times \rho \times g$ (and rearrangements) Reject "gravity" for g in 7(a)(i) Allow standard form Allow use of $g=9.8(1) \rightarrow 7059276$ or 7052080 Allow 7296000 (Pa) OR answer to 7(a)(ii) + 100000	1 2 1
(b) (i) (ii)	pressure = force/area Substitution into correct equation; Transformation; Evaluation; $\begin{aligned} & \text { e.g. } 41 \times 10^{5}=F / 3.1 \\ & F=41 \times 10^{5} \times 3.1 \\ & 1.271 \times 10^{7}(\mathrm{~N}) \end{aligned}$	Allow $p=\mathrm{F} / \mathrm{A}$ Substitution and transposition either order $12710000,127.1 \times 10^{5}, 1.3 \times 10^{7}$	1 3
(c)	because fresh water has a lower density than sea water OR reverse argument;		1
(d)	any five of MP1 suitable measuring instruments mentioned; e.g. measuring cylinder and (electronic) balance MP2 method of obtaining correct mass; e.g. subtract mass of container, use of tare MP3 detail to ensure accuracy of liquid volume; e.g. burette, pipette, density bottle, account taken of meniscus MP4 equation stated - density $=$ mass \div volume; MP5 suitable units used, e.g. g for mass and cm^{3} for volume MP6 Idea of appropriate repeating or averaging at any stage	Allow scales Ignore newtonmeter, weighing machine Ignore weight Allow keep temperature constant Allow $\rho=m / V$ Allow ml, I Allow "discard anomalous results"	5

Question number	Answer		Notes	Marks
8 (a)	all 3 for both marks;; any two for 1 mark ;		each incorrect tick $=-1$	2
	item	Tick if needed		
	ammeter			
	steel spring			
	retort stand and clamp	\checkmark		
	rubber band	given $\quad \checkmark$		
	ruler	\checkmark		
	thermometer			
	mass hanger	\checkmark		
	mass	given $\quad \checkmark$		

(b) $1 \quad 5.5$ (in the table)
suitable scale for axes; axes labelled with units;
points plotted to nearest mm square (minus one for each plotting, up to max 2 marks);;
Line (curve) of best fit acceptable;

iii
No / yes (no mark)
Idea that Hooke's law should show (direct) proportionality;
Use of data (from the table or graph) to explain that the results do not show this;
e.g. 'line is a curve', '(table shows) rubber band extends unevenly'
-1 for each incorrect plot
Allow (ecf) a balanced straight line of best fit that takes account of any plotting errors and indicated anomalies

Mass in g	Force in N	Extension in cm
0	0	0.0
150	1.5	2.4
350	3.5	6.3
550		12.8
750	7.5	18.6
1050	10.5	24.0

Allow (ecf) - converse from straight drawn line, using data from their graph (not the table) e.g. 'Yes' AND 'line is a straight' Total

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
9 (a) \\
I \\
ii \\
iii
\end{tabular} \& \begin{tabular}{l}
\(0.45 ;\) \\
Power \(=\) current \(\times\) voltage; \\
Substitution; \\
Evaluation; \\
e.g. \(1.5=1 \times 0.45\) \\
\(\mathrm{I}=3.3\) (A) (answer to at least 2 s.f.)
\end{tabular} \& \begin{tabular}{l}
no unit penalty \\
Allow \(P=I \times V\) and rearrangements \\
Allow reverse argument yielding \(\underline{1.35}\) (W) for 1 mark
\end{tabular} \& 1
1
2 \\
\hline (b) \(\begin{aligned} \text { i }\end{aligned}\) \& ```
conversion of time to seconds;
substitution into correct equation (\(\mathrm{E}=\mathrm{I} \times \mathrm{V} \times \mathrm{t}\));
evaluation;
e.g. time \(=7 \times 5 \times 60 \times 60 \quad(=126000)\)
\(\mathrm{E}=3.3 \times 9 \times 7 \times 5 \times 60 \times 60\)
3742000 (J)
A description to include
electrical;
to light (and heat);
``` \& \begin{tabular}{l}
Allow solution in stages i.e. from \(P=I V\) and \(P=E / t\) \\
Allow for full marks \\
3402000 (J) (from use of 3 A given above) \\
3780000 (J) (from \(1.5 \times 20 \times 7 \times 5 \times 60 \times 60\) ) \\
Allow max of 1 if time not in seconds, e.g. \\
1040 (J) (from \(3.3 \times 9 \times 7 \times 5\), time in hours) \\
62400 ( J) (from \(3.3 \times 9 \times 7 \times 5 \times 60\), time in minutes) \\
Reject "electricity" for the first mark \\
Allow chemical to electrical to light for 1 mark only
\end{tabular} \& 3

2 <br>
\hline \& \& Total \& 9 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
\begin{array}{lll}
\hline 1 \& (a \& 1 \\
0 \& ) \&
\end{array}
\] \\
ii
\end{tabular} \& \begin{tabular}{l}
MP1 Any circuit including correct circuit symbols for \\
- battery / cell / d.c. power supply \\
- ammeter \\
- voltmeter \\
MP2 ammeter clearly measures current through the wire; \\
MP3 voltmeter clearly across wire; \\
Idea of measuring current through the wire; \\
Idea of measuring voltage across the wire; \\
Idea of a range of values (of I and V ); \\
e.g. alter variable resistor OR repeat for different voltages
\end{tabular} \& \begin{tabular}{l}
ignore other components for MP1 \\
allow even if voltmeter in series with ammeter allow circuit line drawn through meter allow voltmeter across a section of the test wire
\end{tabular} \& 3

3 <br>

\hline | (b) |
| :--- |
| ii |
| (c) |
| i | \& | any one of |
| :--- |
| resistance changes (with temperature) ; |
| wire gets hot and melts/burns/catches |
| fire/dangerous; |
| V proportional to I only at constant temperature; |
| Ohms Law is only true if temperature constant; |
| any one of |
| putting the wire in a water bath; |
| taking the reading quickly; |
| switching off between readings; |
| using only small currents; |
| voltage $=$ current $\times$ resistance ; |
| horizontal line above axis; | \& | Reject incorrect relationship between R and $\Theta$ Ignore damage to wire Reject insulating the wire |
| :--- |
| Allow to return to room temperature |
| Allow $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ and rearrangements | \& 1

1
1

1 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $11 \text { (a) i }$ <br> ii | $\text { GPE }=\text { mass } \times g \times \text { height ; }$ <br> Substitution into correct equation; Evaluation; $\begin{aligned} & \text { e.g. } 0.25 \times 10 \times 1.75 \\ & 4.375 \text { (J) } \end{aligned}$ | Allow GPE $=\mathrm{m} \times g \times \mathrm{h}$ and rearrangements <br> Reject "gravity" for $g$ in 11(a)(i) <br> 4.4, 4.38 <br> Allow use of 9.81 (or 9.8 ) $\rightarrow 4.29$ for full marks | 1 2 |
| (b) | Value given in 11(a)(ii); |  | 1 |
| (c) i | $\mathrm{KE}=1 / 2 \times \text { mass } \times \text { speed }^{2} ;$ <br> Substitution into correct equation; <br> Transformation; Evaluation; $\begin{aligned} & \text { e.g. } 3.1=1 / 2 \times 0.25 \times v^{2} \\ & v^{2}=3.1 \div 1 / 2 \times 0.25 \\ & v=4.98(\mathrm{~m} / \mathrm{s}) \end{aligned}$ | Allow $\mathrm{KE}=1 / 2 \times \mathrm{m} \times \mathrm{v}^{2}$ and rearrangements <br> Substitution and transposition either order <br> Accept 5.0, 5 and allow truncation e.g. 4.97 $\mathrm{m} / \mathrm{s}$ | 1 3 |
|  |  | Total | 11 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 (a) | A description to include any 5 of MP1 nucleus absorbs neutron OR nucleus hit by neutron; <br> MP2 splits into (two) fragments/parts OR daughter atoms OR daughter nuclei; <br> MP3 extra neutrons released; <br> MP4 (kinetic) energy released; <br> MP5 released neutrons hit further nuclei OR uranium nuclei; <br> MP6 moderator slows down the neutrons/ makes it more likely for a neutron to be absorbed; MP7 control rods absorb extra neutrons; MP8 idea that control rods help prevent a "runaway" chain reaction; | Correct process using consistently incorrect particle instead of neutron (e.g. electron) $=$ max 4 <br> NB uranium, U-235 or nucleus must be mentioned <br> Reject cells, molecules, more uranium <br> Ignore heat <br> allow atoms OR uranium atoms | 5 |
| (b) | kinetic/movement energy; |  | 1 |
| (c) | Idea that the shielding absorbs radiation / particles / energy; | Allow "stops radiation / particles from escaping" <br> Ignore "radioactvity" escaping | 1 |
|  |  | Total | 12 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 13 (a) i <br> ii | there is a voltage; <br> And one of (because there is a) change of flux OR field (lines) are cut; <br> (which is) an induced voltage / emf; <br> greater deflection/voltage; Idea that rate of change of flux (linkage) is greater; eg more magnetic field lines cutting coil (per second) | Allow induced current <br> ignore speed of magnet | 2 |
| (b) i <br> ii <br> iii | Idea that deflection is smaller; <br> Idea that deflection is greater; <br> Idea that deflection is in opposite direction; |  | 1 1 1 |
|  |  | Total | 7 |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
14 \quad(\mathrm{a})
\] \\
ii
\end{tabular} \& \begin{tabular}{l}
(Nuclei / atoms) with same number of protons OR same atomic number; different number of neutrons OR different mass number; \\
(stable isotopes) do not emit (ionising) radiation OR (stable isotopes) do not emit alpha, beta and gamma radiation ;
\end{tabular} \& \begin{tabular}{l}
Ignore electrons \\
Allow "(nuclei) of the same element" \\
Allow different number of nucleons \\
Ignore "radioactive", "decay" ignore idea of remaining the same element for ever
\end{tabular} \& 2
1 \\
\hline \begin{tabular}{l}
(b) i \\
ii \\
iii
\end{tabular} \& ```
210-84 OR 126
ideas that
proton number increases by 1;
neutron number decreases by 1;
beta decay
``` \& \begin{tabular}{l}
allow a calculation / nuclear equation Ignore discussion of "number of nucleons" \\
allow \(\beta\) or \(\beta\) or \(\beta^{+}\)
\end{tabular} \& 1
2

1

\hline (c) \& ```
Any two of
idea that gamma is not a particle;
e.g. gamma rays have no (rest) mass
gamma rays do not have a proton number
gamma rays do not contain any protons or
neutrons
gamma rays are electromagnetic radiation OR
energy;
no particles are lost (from the nucleus) when a
gamma ray is emitted;

``` & Allow photons & 2 \\
\hline & & Total & 9 \\
\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG036657 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com


Llywodraeth Cynulliad Cymru Welsh Assembly Government```

